Publications

← Retour à la liste complète des publications

A hydride transfer complex reprograms NAD metabolism and bypasses senescence.

Igelmann S, Lessard F, Uchenunu O, Bouchard J, Fernandez-Ruiz A, Rowell MC, Lopes-Paciencia S, Papadopoli D, Fouillen A, Ponce KJ, Huot G, Mignacca L, Benfdil M, Kalegari P, Wahba HM, Pencik J, Vuong N, Quenneville J, Guillon J, Bourdeau V, Hulea L, Gagnon E, Kenner L, Moriggl R, Nanci A, Pollak MN, Omichinski JG, Topisirovic I, Ferbeyre G

CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada.

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.

Mol Cell 2021;81(18):3848-3865.e19.

Pubmed ID: 34547241

Suivez l'IRIC

Logo UdeM