← Retour à la liste complète des publications

Single-Molecule Reaction Chemistry in Patterned Nanowells.

Bouilly D, Hon J, Daly NS, Trocchia S, Vernick S, Yu J, Warren S, Wu Y, Gonzalez RL, Shepard KL, Nuckolls C

Department of Chemistry, Columbia University , 3000 Broadway, New York, New York 10027 United States.

A new approach to synthetic chemistry is performed in ultraminiaturized, nanofabricated reaction chambers. Using lithographically defined nanowells, we achieve single-point covalent chemistry on hundreds of individual carbon nanotube transistors, providing robust statistics and unprecedented spatial resolution in adduct position. Each device acts as a sensor to detect, in real-time and through quantized changes in conductance, single-point functionalization of the nanotube as well as consecutive chemical reactions, molecular interactions, and molecular conformational changes occurring on the resulting single-molecule probe. In particular, we use a set of sequential bioconjugation reactions to tether a single-strand of DNA to the device and record its repeated, reversible folding into a G-quadruplex structure. The stable covalent tether allows us to measure the same molecule in different solutions, revealing the characteristic increased stability of the G-quadruplex structure in the presence of potassium ions (K(+)) versus sodium ions (Na(+)). Nanowell-confined reaction chemistry on carbon nanotube devices offers a versatile method to isolate and monitor individual molecules during successive chemical reactions over an extended period of time.

Nano Lett. 2016;16(7):4679-85.

Pubmed ID: 27270004

Suivez l'IRIC

Logo UdeM