← Retour à la liste complète des publications

Discovery of G Protein-Biased Dopaminergics with a Pyrazolo[1,5-a]pyridine Substructure.

Möller D, Banerjee A, Uzuneser TC, Skultety M, Huth T, Plouffe B, Hübner H, Alzheimer C, Friedland K, Müller CP, Bouvier M, Gmeiner P

Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg , Schuhstraße 19, 91052 Erlangen, Germany.

1,4-Disubstituted aromatic piperazines are privileged structural motifs recognized by aminergic G protein-coupled receptors. Connection of a lipophilic moiety to the arylpiperazine core by an appropriate linker represents a promising concept to increase binding affinity and to fine-tune functional properties. In particular, incorporation of a pyrazolo[1,5-a]pyridine heterocyclic appendage led to a series of high-affinity dopamine receptor partial agonists. Comprehensive pharmacological characterization involving BRET biosensors, binding studies, electrophysiology, and complementation-based assays revealed compounds favoring activation of G proteins (preferably Go) over β-arrestin recruitment at dopamine D2 receptors. The feasibility to design G protein-biased partial agonists as putative novel therapeutics was demonstrated for the representative 2-methoxyphenylpiperazine 16c, which unequivocally displayed antipsychotic activity in vivo. Moreover, combination of the pyrazolo[1,5-a]pyridine appendage with a 5-hydroxy-N-propyl-2-aminotetraline unit led to balanced or G protein-biased dopaminergic ligands depending on the stereochemistry of the headgroup, illustrating the complex structure-functional selectivity relationships at dopamine D2 receptors.

J. Med. Chem. 2017.

Pubmed ID: 28248104

Suivez l'IRIC

Logo UdeM