← Return to the complete list of publications

MHC I-associated peptides preferentially derive from transcripts bearing miRNA response elements.

Granados DP, Yahyaoui W, Laumont CM, Daouda T, Muratore-Schroeder TL, Côté C, Laverdure JP, Lemieux S, Thibault P, Perreault C

Institute for Research in Immunology and Cancer, and.

MHC I-associated peptides (MIPs) play an essential role in normal homeostasis and diverse pathologic conditions. MIPs derive mainly from defective ribosomal products (DRiPs), a subset of nascent proteins that fail to achieve a proper conformation and the physical nature of which remains elusive. In the present study, we used high-throughput proteomic and transcriptomic methods to unravel the structure and biogenesis of MIPs presented by HLA-A and HLA-B molecules on human EBV-infected B lymphocytes from 4 patients. We found that although HLA-different subjects present distinctive MIPs derived from different proteins, these MIPs originate from proteins that are functionally interconnected and implicated in similar biologic pathways. Secondly, the MIP repertoire of human B cells showed no bias toward conserved versus polymorphic genomic sequences, were derived preferentially from abundant transcripts, and conveyed to the cell surface a cell-type-specific signature. Finally, we discovered that MIPs derive preferentially from transcripts bearing miRNA response elements. Furthermore, whereas MIPs of HLA-disparate subjects are coded by different sets of transcripts, these transcripts are regulated by mostly similar miRNAs. Our data support an emerging model in which the generation of MIPs by a transcript depends on its abundance and DRiP rate, which is regulated to a large extent by miRNAs.

Blood 2012;119(26):e181-91.

Pubmed ID: 22438248

Follow IRIC

Logo UdeM