Publications

← Return to the complete list of publications

RSK Regulates PFK-2 Activity to Promote Metabolic Rewiring in Melanoma.

Houles T, Gravel SP, Lavoie G, Shin S, Savall M, Méant A, Grondin B, Gaboury L, Yoon SO, St-Pierre J, Roux PP

Cell Signalling and Proteomics, IRIC.

Metabolic reprogramming is a hallmark of cancer that includes increased glucose uptake and accelerated aerobic glycolysis. This phenotype is required to fulfill anabolic demands associated with aberrant cell proliferation and is often mediated by oncogenic drivers such as activated BRAF. In this study, we show that the MAPK-activated p90 ribosomal S6 kinase (RSK) is necessary to maintain glycolytic metabolism in BRAF-mutated melanoma cells. RSK directly phosphorylated the regulatory domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), an enzyme that catalyzes the synthesis of fructose-2,6-bisphosphate during glycolysis. Inhibition of RSK reduced PFKFB2 activity and glycolytic flux in melanoma cells, suggesting an important role for RSK in BRAF-mediated metabolic rewiring. Consistent with this, expression of a phosphorylation-deficient mutant of PFKFB2 decreased aerobic glycolysis and reduced the growth of melanoma in mice. Together these results indicate that RSK-mediated phosphorylation of PFKFB2 plays a key role in the metabolism and growth of BRAF-mutated melanomas.

Cancer Res. 2018.

Pubmed ID: 29440170

Follow IRIC

Logo UdeM